The Application Environment Services

In this document, I list assembly language and C interfaces to the Intel GEM AES. The C
prototypes are similar to those provided by the GEM Developer's Kit, version 3.0. Most of the C
interfaces are declared to return WORDs; these will nearly always be the value returned in

int_out[0]. The symbol C indicates that a function behaves differently in different GEM
versions.

This is still a work in progress. Some information is missing or requires additional explanation. The
information has been obtained by examining GEM source and bindings rather than published
documentation. I have not been able to disassemble GEM/4 enough to find the purposes of various
functions; only to note their existence.

The AES deals with drawing windows on the screen, and with managing controls (text fields,
buttons etc.).

The AES lives in the file GEM.EXE (in ViewMAX, VIEWMAX.OVL). It is accessed by using INT
OEFh with CX=00C8h and ES:BX=address of parameter block. It also checks for CX=00C9%h, but
in the single-tasking version this is a no-op.

The parameter block format is:

DD CONTROL ;Address of control array

DD GLOBALS ;Address of globals array

DD INT IN ;Address of integer input array

DD INT OUT ;Address of integer output array

DD ADDR_IN ;Address of far pointer input array
DD ADDR OUT ;Address of far pointer output array

The control array is:

CONTROL:
DEFW function ;Input: AES function, 10-134
DEFW #int in ;Input: No. of integer parameters
DEFW #int out ;Input: Max. no. of return words
DEFW #addr in ;Input: No. of pointer parameters
DEFW #addr out ;Input: Max no. of return pointers

; (ignored in single-tasking GEM)

The globals array is used to hold necessary GEM state relating to the current process. It is almost
entirely managed by GEM and there are very few occasions when programs need to modify it.

Function 10 - Initialise AES

C Interface:

« WORD appl_init(VOID);
« WORD appl_init(X_BUF_V2 *xbuf);

Entered with:

Sfunction=10;

« #int_in=0;

#addr in=0or 1.

If #addr inis 1, addr in[0] must be the address of an initialised X_BUF V2 structure.

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aestruct.html#x_buf_v2

: The extra parameter to an X BUF V2 is an extension in the FreeGEM AES. If
addr in[0] issetto 1 and an initialised X_BUF V2 structure is passed in, then on return its
arch member will be 0 for DRI GEM or ViewMAX, and 16 or 32 for FreeGEM.

Returns:

- Iffailed, int out[0] is-1.
- If succeeded, int_out[0] is the application's ID (process ID) and the globals array will

contain:
DEFW version ;eg 0x0300 for GEM 3.0 and all ViewMAX
versions
DEFW max_ tasks ;1 for single-tasking, >1 for multitasking
DEFW app_id ;Same as int out[0]
DD ap_private ;Available for use by the program
;The GEM vl desktop assumes that on entry
;this is the ob _spec of the desktop
window.
;It uses this value to construct its own
;custom desktop.
DEFS 10 ;Not set at init time. Used to hold
;pointers to the currently loaded resource
file.
DEFW nplanes ;No. of planes in the display
DD global ;Address of GEM global variables area
DEFW disks ;Bitmap of available drives
DEFW hds ;Bitmap of available hard drives

: (all values after [ap_private+4] are variables used internally by GEM; their meaning
may not be the same in all versions).

Function 11 - Read message pipe

C Interface:

« WORD appl read(WORD rwid, WORD length, VOID far *pbuff);
Entered with:

 function=11;

- #int _in=2,

« #addr _in=1.

« int in[0] =rwid, int in[1] = length

« addr in[0] = address of data to read.

rwid is the application ID of the process that owns the message pipe (normally the calling process).
This call will block until the required data have been returned.

See the message list for information on standard AES messages. All AES messages are 16 bytes
long.

http://www.seasip.info/Gem/aesmsg.html
http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/gengem.html

Function 12 - Write message pipe

C Interface:
WORD appl_write(WORD rwid, WORD length, VOID far *pbuff);
Entered with:

function=12;
#int_in=2;
#addr in=1.
int in[0] =rwid, int in[1] =length
addr in[0] = address of data to write.

rwid is the application ID of the process to which the data should be sent. This call will block until
the data have been sent.

See the message list for information on standard AES messages. All AES messages are 16 bytes
long.

Function 13 - Find an application

C Interface:
WORD appl find(BYTE far *name);;
Entered with:

 function=13;
#int_in=0;
#addr in=1.
addr in[0] = address of process name (max. 8 bytes + terminating zero; if less than 8
bytes, pack it with spaces).

Returns:

If process found: Its application ID.
If not: -1

GEM's internal window manager process is called SCRENMGR.

Function 14 - Play back recorded events

C Interface:
WORD appl tplay(BYTE far *buffer, WORD length, WORD scale);
Entered with:

+ function=14;

#int_in=2;

#addr in=1.

int in[0] = length of buffer

int in[1] = Playback speed (percent of normal)
addr in[0] = address of buffer

http://www.seasip.info/Gem/aesmsg.html

Function 15 - Record events to memory

C Interface:
WORD appl_trecord(BYTE far *buffer, WORD length);
Entered with:

 function=15;
#int in=1;
#addr in=1.
int in[0] = length of buffer
addr in[0] = address of buffer

Each record in the buffer is 6 bytes; a 2-byte event type and a 4-byte event body:

Type Body

0 = timer event LONG millis; (Time in milliseconds)

1 = button event WORD down (l=down O=up); WORD click count;
2 = mouse movement event WORD x; WORD vy;

3 = keyboard event WORD char; WORD keystate;

Function 16 - Set bitmaps of available drives

C Interface:
WORD appl bvdisk(WORD bvdisk, WORD bvhard);
Entered with:

+ function=16;
#int_in=2;
#addr in=0.
int in[0] = bitmap of available drives
int in[1] = bitmap of available hard drives
Not documented in GEM/1 programmer's guide.

In GEM/4 and GEM/5, use function 18 to access drives beyond P:

Function 17 - Yield

C Interface:
WORD appl_yield();
Entered with:

 function=17,
#int in=0;
#addr in=0.

Allows other processes to run.

: Not present in GEM/1; it can be simulated by evnt timer(0.0).

Function 18 - Extended available drive bitmaps

C Interface:
None.
Entered with:
+ function=18;
#int_in=1,
#int out=4;
#addr in=2.
int in[0] = function code.
If int_in[0] is 1:
addr in[0] = bitmap of available drives
addr in[1] = bitmap of available hard drives

Returns:

(only if int_in[0] was 0)

int out [0] = bitmap of available drives (drives Q:-Z:)

int out[1] = bitmap of available drives (drives A:-P:)

int out[2] = bitmap of available hard drives (drives Q:-Z:)
[3]

int out = bitmap of available hard drives (drives A:-P:)

: This function is only present in GEM/4 and GEM/5.
In addr in, bit 31 corresponds to drive A:, bit 30 to drive B:, etc.
In addr out, bit 15 corresponds to drive A: or Q:, 16 to B: or R:, etc.

Function 19 - Finish using AES

C Interface:
WORD appl_exit();
Entered with:

+ function=19;
#int in=0;
#addr in=0.

Free all AES resources used by this program. On single-user versions, close all desk accessories.

http://www.seasip.info/Gem/aes.html#24

Function 20 - Await keyboard event

C Interface:
UWORD evnt_keybd();
Entered with:
. function=20;

#int_in=0;
#addr in=0.
Returns:

int_out[0] = keycode.

This call (like all evnt_* calls) will block the calling program until an event is received. If the low
byte is 0, then the high byte holds a scancode; otherwise, the low byte holds an ASCII character.

Function 21 - Await mouse click

C Interface:

WORD evnt_button(WORD clicks, UWORD mask, UWORD state, WORD *pmx, WORD
*pmy, WORD *pmb, WORD *pks);

Entered with:

+ function=21;
#int in=3;
#addr in=0;
int_in[0] = no. of clicks to watch for;
int_in[1] = mask of mouse buttons to watch;
int_in[2] = state these buttons must be in.

Returns:

int_out[0] = mouse X coordinate
int_out[1] = mouse Y coordinate
int_out[2] = mouse button status
int_out[3] = shift state.

The mask and state parameters work like this: the call will return when all the appropriate bits of the
mouse state match all the appropriate bits of the state parameter. As "Professional GEM" puts it:

It is important to notice that all of the target states in btn_state must occur
SIMULTANEOUSLY for the event to be triggered.

Note the limiting nature of this last statement. It prevents a program from waiting for
EITHER the left or right button to be pressed. Instead, it must wait for BOTH to be
pressed, which is a difficult operation at best.

The mouse button bits are:

Bit 0: Left
Bit 1: Right
Bit 2: Middle

The keyboard shift bits are:

Bit 0: Right shift
Bit 1: Left shift
Bit 2: Control
Bit 3: Alt

Function 22 - Await mouse enter/leave rectangle

C Interface:

WORD evnt_ mouse(WORD flags, WORD x, WORD y, WORD width, WORD height,

WORD *pmx, WORD *pmy, WORD *pmb, WORD *pks);
Entered with:

+ function=22;

#int_in=3;

#addr in=0;

int_in[0] = 0 to watch for entry, 1 to watch for exit;

int_in[1-4] = rectangle to watch.
Returns:

int_out[0] = mouse X coordinate

int_out[1] = mouse Y coordinate

int_out[2] = mouse button status
int_out[3] = shift state.

The returned values have the same meanings as in evnt_button() above.

Function 23 - Await message

C Interface:
WORD evnt mesag(WORD buff]8]);
Entered with:

 function=23;
#int_in=0;
#addr in=1;
addr_in[0] = address of message buffer.
Waits for a message to be received.

See the message list for information on standard AES messages. All AES messages are 16 bytes
long.

In single-tasking GEM, this is the same operation as reading 16 bytes from the message pipe; see

function appl_read()

http://www.seasip.info/Gem/aes.html#11
http://www.seasip.info/Gem/aesmsg.html
http://www.seasip.info/Gem/aes.html#21
http://www.seasip.info/Gem/aestruct.html#grect

Function 24 - Sleep

C Interface:
WORD evnt_timer(WORD count_low, WORD count_high);
Entered with:

 function=24;
#int_in=2;
#addr in=0;
int_in[0] = low millisecond count;
int_in[1] = high millisecond count.

Waits until at least the specified time. It may be more, depending on when other processes are
blocked.

Function 25 - Monitor all events

C Interface:

WORD evnt multi(UWORD flags, UWORD bclk, UWORD bmsk, UWORD bst, UWORD
mlflags, UWORD mlx, UWORD mly, UWORD mlw, UWORD m1h, UWORD m2flags,
UWORD m2x, UWORD m2y, UWORD m2w, UWORD m2h, WORD mepbuff]8],
UWORD tlc, UWORD thc, UWORD *pmx, UWORD *pmy, UWORD *pmb, UWORD
*pks, UWORD *pkr, UWORD *pbr);

Entered with:

 function=25;
#int_in=16;
#addr in=1;
int_in[0] = Event flags (which events are allowed);
int_in[1] = Mouse click count;
int_in[2] = Mouse mask;
int_in[3] = Mouse state;
int_in[4] = Mouse rectangle 1 flags;
int_in[5-8] = Mouse rectangle 1;
int_in[9] = Mouse rectangle 2 flags;
int_in[10-13] = Mouse rectangle 2;
int_in[14] = timer count, low;
int_in[15] = timer count, high;
addr in[0] = address of message buffer;

Returns:

int_out[0] = Event flags (what event was received);
int_out[1] = mouse X - coordinate;

int_out[2] = mouse Y - coordinate;

int_out[3] = mouse button flags;

int_out[4] = keyboard state;

int_out[5] = keycode;

int_out[6] = mouse click count;

The flags word should be set to a bitwise OR of some of:

MU KEYBD 0x0001 Key event

MU BUTTON 0x0002 Mouse click event

MU M1 0x0004 Mouse rectangle 1 enter/leave

MU M2 0x0008 Mouse rectangle 2 enter/leave

MU MESAG 0x0010 Message receive

MU TIMER 0x0020 Timeout

MU KEYBD4 0x0100 Used internally in GEM/4 to check for a context-sensitive
help request.

On return it will be the type of event that was received.

The parameters and results are as handled by the one-type evnt_*() calls listed above.

Some versions of the GEM Programmers Toolkit have an evnt_evnt() call that takes the evnt multi
parameters in a struct rather than as explicit parameters.

Function 26 - Set double-click time

C Interface:
« WORD evnt_dclick(WORD rate, WORD setit);
Entered with:

function=26;

. #int in=2;

#addr in=0;

int_in[0] = new rate;

- int in[1] =1 to set new rate, O to read old rate.

Returns:
- int_in[0] = rate now in use

The double-click rate is 0 (slow) to 4 (fast). It is the length of time GEM waits after a mouse click
to see if another mouse click is coming.

Function 30 - Create or remove menu bar

C Interface:

« VOID menu_bar(OBJECT far *tree, WORD showit);
Entered with:

+ function=30;

- #int_in=1;

« #Haddr_in=1;

- int_in[0] = 0 to remove the menu bar, nonzero to create it.

+ addr_in[0] = address of the object tree for the menu bar (only needed when the bar is being
created).;

http://www.seasip.info/Gem/aestruct.html#object

Function 31 - Mark menu item as "checked"

C Interface:
VOID menu_icheck(OBJECT far *tree, WORD item, WORD checkit);

Entered with:
 function=31;
#int_in=2;
#addr in=1;
int_in[0] = Index of object within the menu tree.
int_in[1] = 0 for unchecked; else checked.
addr_in[0] = address of the object tree for the menu bar.

Function 32 - Mark menu item as enabled/disabled

C Interface:
VOID menu_ienable(OBJECT far *tree, WORD item, WORD checkit);

Entered with:
+ function=32;
« #int_in=2;
#addr in=1;
int_in[0] = Index of object within the menu tree.
int_in[1] = 0 for disabled; else enabled.
addr_in[0] = address of the object tree for the menu bar.

Function 33 - Mark menu item as selected/normal

C Interface:
VOID menu_tnormal(OBJECT far *tree, WORD item, WORD normalit);

Entered with:
 function=33;
- #int_in=2;
#addr in=1;
int_in[0] = Index of object within the menu tree.
int_in[1] = 0 for selected; else normal.
addr_in[0] = address of the object tree for the menu bar.

Function 34 - Set menu item text

C Interface:
VOID menu_text(OBJECT far *tree, WORD item, BYTE far *text);

http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object

Entered with:

+ function=34;

- #int_in=1;
#addr in=2;
int_in[0] = Index of object within the menu tree.
addr_in[0] = address of the object tree for the menu bar.
addr in[1] = far pointer to text.

If the segment of the tree address is 0, the offset is the application ID for a desktop accessory. In
this case, the text will be set for the accessory's menu item.

In GEM/3, this call actually sets the menu iten's object specification; so if you have bitmaps in your
menus, this call could be used to point them at a new BITBLK structure. However, it would be
unwise to rely on this implementation detail; better to call this only for menu items that are string
objects.

Function 35 - Register a desk accessory

C Interface:
WORD menu_register(WORD pid, BYTE far *pstr);
Entered with:

+ function=35;
#int_in=1;
#addr in=1;
int_in[0] = This program's application ID.
addr_in[0] = Text to appear in the menu option.

Returns:
int_out[0] = object number of menu item for this option.

Returns -1 if no spare menu options available.

Function 36 - Unregister a desk accessory

C Interface:
WORD menu_unregister(WORD itemid);
Entered with:

+ function=36;
#int_in=1,
#addr in=0;
int_in[0] = Menu item ID returned from menu_register().

Removes the appropriate desk accessory entry from the menu.

: Not present in GEM/1.

http://www.seasip.info/Gem/aes.html#35

Function 37 - Set/get menu click options

C Interface:
WORD menu_click(WORD click, WORD setit);
Entered with:

function=37,
#int_in=2;
#addr in=0;
int in[0] = 0 if click is not required, 1 if click required.
int in[1] = 0 to read the current setting, 1 to set the value passed in int_in[0].

Returns:

int_out[0] = 0 if click is not required, 1 if it is.

C Only present on GEM/3 and later. This call sets whether a click is needed to drop down
menus, or whether the menus just appear when the mouse moves over the menu titles.

Function 38

C This function is only present in GEM/4, and its parameters and results are unknown. It is
likely that it allows a menu bar to be attached to a window.

Function 40 - Add an object to an object tree

C Interface:
WORD objc_add(OBJECT far *tree, WORD parent, WORD newchild);
Entered with:

+ function=40;
- #int in=2,
#Haddr in=1;
int_in[0] = index of parent of new object
int_in[1] = index of new object
addr_in[0] = address of root of this object tree.

Adds the object as the parent's last child.

Function 41 - Delete an object from an object tree

C Interface:
WORD objc_delete(OBJECT far *tree, WORD obyj);
Entered with:

http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object

function=40;
#int_in=1,
#addr in=1;
int_in[0] = index of object to delete
addr_in[0] = address of root of this object tree.

The object and all its children will be removed from the tree; unless it's the root object, in which
case nothing happens.

Function 42 - Draw an object or object tree

C Interface:

WORD objc_draw(OBJECT far *tree, WORD object, WORD depth, WORD xc, WORD yec,
WORD wc, WORD hc);

Entered with:

+ function=42;

.« #int_in=o6;
#addr _in=1;
int_in[0] = index of object to draw.
int_in[1] = depth to draw. 0 means don't draw children. Depth can be up to 8.
int_in[2-5]= clipping rectangle to use while drawing.
addr_in[0] = address of root of this object tree.

Function 43 - Find an object from its coordinates

C Interface:
WORD objc_find(OBJECT far *tree, WORD start_object, WORD depth, WORD x, WORD
)i
Entered with:
 function=43;
- #int_in=4,
#addr in=1;
int_in[0] = index of first object to search. This object and its children will be tested.
int_in[1] = depth to search. 1-8.
int_in[2-3]= point the object must cover.
addr_in[0] = address of root of this object tree.

Returns:

int_out[0] = index of object containing the point, -1 if none.

Function 44 - Find coordinates of an object

C Interface:

http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object

WORD objc offset(OBJECT far *tree, WORD object);

Entered with:
+ function=44;

#int_in=1;

#Haddr in=1;

int_in[0] = index of object to find.

addr_in[0] = address of root of this object tree.
Returns:

int out[0] =?
int_out[1-2] = coordinates of object, based on coordinates of root object.

Function 45 - Change an object's order in the tree

C Interface:

WORD objc_order(OBJECT far *tree, WORD obj, WORD newposition);
Entered with:

+ function=45;

#int in=2;

#Haddr in=1;

int_in[0] = index of object to move.

int_in[1] = position among the object's siblings. 0 => before first; -1 => after last.

addr_in[0] = address of root of this object tree.

The object and its siblings will be rearranged into the correct order.

Function 46 - Handle a keypress in a text field

C Interface:

WORD objc_edit(OBJECT far *tree, WORD object, WORD char, WORD *idx, WORD
kind);

Entered with:

+ function=46;
#int in=4;
#addr in=1;
int_in[0] = index of object being edited.
int_in[1] = keycode to process
int_in[2] = cursor position in field
int_in[3] = event type
addr_in[0] = address of root of this object tree.

Returns:

int_out[0] =?
int_out[1] = new cursor position.

http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object

Event types are:

#define EDSTART O /* No-op in current PC versions */

#define EDINIT 1 /* Editing is starting; cursor position is set to
* end of text */

#define EDCHAR 2 /* Character has been received, process it */

#define EDEND 3 /* Field is losing focus */

Function 47 - Change an object's state

C Interface:

WORD objc_change(OBJECT far *tree, WORD object, WORD depth, WORD xc, WORD
yc, WORD wc, WORD hc, WORD newstate, WORD redraw);

Entered with:

 function=4T7;
#int_in=8;
#addr in=1;
int_in[0] = index of object to change.
int_in[1] = depth to draw. 0 means don't draw children. Depth can be up to 8.
int_in[2-5]= clipping rectangle to use while drawing.
int_in[6] = new state.
int_in[7] = nonzero to redraw the object
addr_in[0] = address of root of this object tree.

Function 50 - Modal entry form

C Interface:
WORD form_do(OBJECT far *tree, WORD object);
Entered with:

+ function=50;
#int_in=1,
#addr _in=1;
int_in[0] = index of object that starts with the focus.
addr_in[0] = address of root of the object tree that represents the form.

Returns:

int_out[0] = index of object that caused loop to finish. Bit 15 will be set if the object was
double-clicked.

This will enter a modal loop, and not leave it until either:

An object with the EXIT flag has been selected;
An object with the TOUCHEXIT flag has been clicked.

The source of form_do() is normally provided with GEM developer kits, so that developers can
construct versions with special behaviour.

http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#ob_state
http://www.seasip.info/Gem/aestruct.html#object

Function 51 - Create or destroy dialog{ue} box

C Interface:

« WORD form_dialog(WORD dtype, WORD x1, WORD y1, WORD w1, WORD h1, WORD
x2, WORD y2, WORD w2, WORD h2);

Entered with:

 function=51;

« #int in=9;

« #addr in=0;

- int_in[0] = subfunction (see below);

« int_in[1-4] = bounding rectangle of box

- int_in[5-8] = second rectangle for zoom effects

The subfunctions are:

#define FMD START 0 /* Save the screen area that will be overwritten.
Must be called before the box is drawn */

#define FMD GROW 1 /* Show "zooming box" for form opening */

#define FMD_ SHRINK 2 /* Show "zooming box" for form closing */

#define FMD FINISH 3 /* Restore the screen area that was overwritten. */

: The "grow" and "shrink" calls are not implemented in Digital Research's GEM; but
GROWBOX.ACC can be used to provide the correct functionality.

Function 52 - Show alert message

C Interface:
« WORD form_alert(WORD detbutton, BYTE FAR *text);
Entered with:

+ function=52;

- #int in=1,

« #addr in=1;

int_in[0] = default button, 1-3 or 0 for none;
+ addr_in[0] = message box string.

Returns
- int_out[0] = button number chosen

The message box string is formed of three sections in square brackets: [n] [1ine| l1ine|
...) [button|button]|...]

« The first section is the icon number; 0 for none, 1 for warning ("note"), 2 for question
"wait") and 3 for stop.

« The second section is up to five lines of text, separated by | marks.

« The third section is up to three button captions; again, they are separated by | marks.

So, a typical message couldbe: "[1] [The printer is not responding] [Retry |
Cancel 1".

: ViewMAX/2 and later parse the "default button" parameter as two bytes; the low byte is the

http://www.seasip.info/Gem/gengem.html

default button and the high byte is the cancel button (ESC is a shortcut for it). This style of
parameter will crash earlier GEM versions.

Function 53 - Show system alert message

C Interface:
WORD form_error(WORD err);
Entered with:

 function=53;
#int in=1;
#addr in=0;
int_in[0] = DOS 2.x error code (see the Interrupt List, AH=59h);

Returns:

int_out[0] = 0 to cancel, else retry.

Function 54 - Centre an object on the screen

C Interface:

WORD form_center(OBJECT far *obj, WORD *x, WORD *y, WORD *w, WORD *h);
Entered with:

 function=>54;

#int_in=0;

#addr in=1;

addr_in[0] = Address of object to centre.
Returns:

int_out[1-4] = object bounding rectangle, centred.

Function 55 - Handle keyboard event in a modal form

C Interface:

WORD form_keybd(OBJECT far *tree, WORD obj, WORD nxtobj, WORD char, WORD
*pnext, WORD *pchar);

Entered with:

 function=55;
« #int_in=3;
#addr in=1;
int_in[0] = Index of object with the focus.
int_in[1] = Index of object expected to be next with focus.
int_in[2] = Keycode to process
addr_in[0] = Address of root object of the form.

http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/aestruct.html#object

Returns:

int_out[0] = I if modal loop should continue, else 0.
int_out[1] = Next object to have the focus.
int_out[2] = 0 if keycode processed, else keycode.

Function 56 - Handle click event in a modal form

C Interface:
WORD form_button(OBJECT far *tree, WORD obj, WORD clicks, WORD *pnext);
Entered with:

 function=56;
#int_in=2;
#addr in=1;
int_in[0] = Index of object with the focus.
int_in[1] = No. of clicks received.
addr_in[0] = Address of root object of the form.

Returns:

int_out[0] = 1 if modal loop should continue, else 0.
int_out[1] = Next object to have the focus.

Function 57 - GEM/4 Modal entry form

C Interface:
None.
Entered with:

 function=57,
- #int _in=2;
#addr in=1;
int_in[0] = index of object that starts with the focus.
int_in[1] = GEM/4 context-sensitive help flag.
addr _in[0] = address of root of the object tree that represents the form.

Returns:

int_out[0] = index of object that caused loop to finish. Bit 15 will be set if the object was
double-clicked.

If the context-sensitive help flag is set, pressing the [F1] key will trigger a 'help' mode. Clicking on
an object when in 'help' mode then ends the modal loop, with an object number of -1 returned.

: This function is only available in GEM/4 and GEM/5.

http://www.seasip.info/Gem/aestruct.html#object

Function 58 - GEM/4 alert

C Interface:
None.
Entered with:

 function=58;
« #int_in=2;
#addr in=1;
int in[0] = default button, 1-3 or O for none;
int_in[1] = Help flag, 1 if context-sensitive help supported.
addr_in[0] = message box string.

Returns

int_out[0] = button number chosen, -1 for context-sensitive help request.

: This function is only available in GEM/4 and GEM/5.

If context-sensitive help was chosen, WM_REDRAW messages are sent out to some windows.

C The following functions (60-67) are mentioned in the GEM source under the condition
"MULTIAPP". They are not included in any single-tasking PC GEM or documented in any known
GEM programmer's toolkit.

Function 60 - Create a process

C Interface:

WORD proc_create(VOID far *address, LONG size, WORD is_swap, WORD is_gem,
WORD *num);

Entered with:
function=60;

#int in=2;

#Haddr in=2;

int_in[0] = "is swap" flag

int_in[1]="is GEM" flag

addr_in[0] = Address to load process.

addr_in[1] = Space to allocate for process.
Returns:

int_out[0] = ? 0 if failed, else succeeded ?
int_out[1] = process ID of new process

Function 61 - Run process

C Interface:

WORD proc_run(WORD pid, WORD is_graphical, WORD is_overlayed, BYTE far
*command, BYTE FAR *tail);

Entered with:

+ function=61;
#int_in=3;
#addr in=2;
int_in[0] = Process ID
int_in[1] ="is graphical" flag
int_in[2] ="is overlayed" flag
addr_in[0] = ? Name of program
addr_in[1] = ? Command tail to pass to it.

Returns:

int_out[0] = ? 0 if failed, else succeeded ?

Function 62 - Delete process

C Interface:
WORD proc_delete(WORD pid);
Entered with:

+ function=62;
#int_in=1;
#addr in=0;
int_in[0] = Process ID to delete.
Returns:

int out[0] = ? 0 if failed, else succeeded ?

Function 63 - Process information

C Interface:

WORD proc_info(WORD pid, WORD *is_swap, WORD *is_gem, (VOID far *)* address,

LONG *csize, (VOID far *)*endmem, LONG *ssize, (VOID far *)* intaddr);
Entered with:

+ function=63;

#int_in=1;

#addr in=0;

int_in[0] = Process ID about which to get info.
Returns:

int_out[0] = ? 0 if failed, else succeeded ?

int_out[1] ="is swap" flag

int_out[2] ="is GEM" flag

addr_out[0] = beginning address

addr out[1] = "csize" - code size?
addr_out[2] = "end memory"
addr_out[3] = "ssize" - stack size?
addr_out[4] = "intaddr"

Function 64 - Allocate memory

C Interface:
WORD proc_malloc(VOID far *address, LONG size);
Entered with:

function=65;
#int_in=0;
#Haddr in=2;
addr_in[0] = base of memory
addr_in[1] = length to allocate

Returns:

int_out[0] = ? 0 if failed, else succeeded ?

Function 65 - Free memory

C Interface:
WORD proc_free(WORD pid);
Entered with:

* function=65;
#int in=1;
#addr in=0;
int_in[0] = process ID.

Returns:

int_out[0] = ? 0 if failed, else succeeded ?

Function 66 - Switch to process?

C Interface:
WORD proc_switch(WORD pid);
Entered with:

+ function=66;
#int_in=1,
#addr in=0;
int_in[0] = process ID to switch to?.

Returns:

int_out[0] = ? 0 if failed, else succeeded ?

Function 67 - Block a process?

C Interface:
WORD proc_setblock(WORD pid);
Entered with:

+ function=67;
#int in=1;
#addr in=0;
int_in[0] = process ID to block?.

Returns:

int_out[0] = ? 0 if failed, else succeeded ?

Function 70 - Drag box for sizing

C Interface:

WORD graf rubbox(WORD x, WORD y, WORD mw, WORD mh, WORD *pw, WORD
*ph);
Entered with:

+ function=70;

- #int_in=4;
#addr _in=0;
int_in[0] = X coordinate of box (top left corner)
int_in[1] =Y coordinate of box (top left corner)
int_in[2] = minimum width of box
int_in[3] = minimum height of box.

Returns:

int_out[1] = final width of box
int_out[2] = final height of box

Returns when the mouse button is released.

Function 71 - Drag box for drag/drop

C Interface:

WORD graf dragbox(WORD w, WORD h, WORD sx, WORD sy, WORD xc, WORD yc,
WORD wc, WORD hc, WORD *pdx, WORD *pdy);

Entered with:

+ function=71;
#int_in=8;
#addr in=0;
int_in[0] = width of box
int_in[1] = height of box
int_in[2] = initial X coordinate of box, relative to mouse cursor X
int_in[3] = initial Y coordinate of box, relative to mouse cursor Y
int_in[4-7] = bounding rectangle outside which the box cannot be dragged.

Returns:

int_out[1] = final X coordinate of box
int_out[2] = final Y coordinate of box

Returns when the mouse button is released.

Function 72 - Draw moving box

C Interface:
WORD graf mbox(WORD w, WORD h, WORD sx, WORD sy, WORD dx, WORD dy);
Entered with:
 function=72;
- #int _in=6;
#addr in=0;
int_in[0] = width of box
int_in[1] = height of box
int_in[2] = initial X coordinate of box
int_in[3] = initial Y coordinate of box
int_in[4] = final X coordinate of box
int_in[5] = final Y coordinate of box

This suffers from a slight problem on modern PCs; it draws too fast to see! This problem has been
corrected in FreeGEM.

Function 73 - Draw expanding box

C Interface:

WORD graf growbox(WORD x1, WORD y1, WORD w1, WORD h1, WORD x2, WORD
y2, WORD w2, WORD h2);

Entered with:
 function=73;
« #int_in=8§;
#addr _in=0;
int_in[0-3] ="from" rectangle
int_in[4-7] = "to" rectangle

This animates the "from" rectangle moving to the centre of the "to" rectangle, and then expanding to

http://www.seasip.info/Gem/aestruct.html#grect
http://www.seasip.info/Gem/aestruct.html#grect

fill it.

: Many versions of Digital Research GEM do not implement this function, and some
development kits include dummy bindings that don't call the AES. GROWBOX.ACC implements it
on non-equipped GEMs.

Function 74 - Draw contracting box

C Interface:

WORD graf shrinkbox(WORD x1, WORD y1, WORD w1, WORD h1, WORD x2, WORD
y2, WORD w2, WORD h2);

Entered with:
 function=74;
#int_in=8;
#addr _in=0;
int_in[0-3] ="from" rectangle
int_in[4-7] ="to" rectangle
This performs the reverse animation of graf growbox().

: Many versions of Digital Research GEM do not implement this function, and some
development kits include dummy bindings for it. GROWBOX.ACC implements it on non-equipped
GEMs.

Function 75 - See if a mouse moves off a control

C Interface:
WORD graf watchbox(OBJECT far *tree, WORD obj, WORD instate, WORD outstate);
Entered with:

+ function=75;
« #int_in=3;
#addr in=1;
addr in[0] = address of the object tree containing the object to watch.
int_in[0] = index of the object in the tree
int_in[1] = object state if the pointer is over it
int_in[2] = object state if the pointer isn't.

Returns:
int_out[0] = 0 if the pointer is now inside the object, 1 if it is now outside it.

This will return when the mouse button is released.

http://www.seasip.info/Gem/aestruct.html#object
http://www.seasip.info/Gem/gengem.html
http://www.seasip.info/Gem/aes.html#73
http://www.seasip.info/Gem/aestruct.html#grect
http://www.seasip.info/Gem/aestruct.html#grect
http://www.seasip.info/Gem/gengem.html

Function 76 - Handle vertical/horizontal drag

C Interface:
WORD graf slidebox(OBJECT far *tree, WORD parent, WORD obj, WORD isvertical);
Entered with:
 function=76;
« #int_in=3;
#addr in=1;
addr in[0] = address of the object tree containing the "thumb" object to drag.
int_in[0] = index of the object's parent in the tree, outside which the object may not be
dragged;
int_in[1] = index of the object itself;
int_in[2] =1 for vertical, O for horizontal.

Returns:

int_out[0] = Position of "thumb" in parent, 0-1000 (Position difference / size difference *
1000).

This will return when the mouse button is released.

Function 77 - Get GEM's VDI handle

C Interface:

WORD graf handle(WORD *pwchar, WORD *phchar, WORD *pwbox, WORD *phbox);,
Entered with:

+ function=77,

#int_in=0;

#addr in=0.
Returns:

int_out[0] = The VDI handle (graphics context) used for all AES drawing operations;

int_out[1] = Character width

int_out[2] = Character height
int_out[3] = width of box to surround a character (scaled from int_out[4])

int_out[4] = height of box to surround a character (int_out[2] + 3)

Function 78 - Set mouse pointer

C Interface:
WORD graf mouse(WORD number, WORD FAR *form);
Entered with:

. function=78;
#int_in=1,
#Haddr in=1;

http://www.seasip.info/Gem/vdi.html#12
http://www.seasip.info/Gem/vdi.html#12
http://www.seasip.info/Gem/aestruct.html#object

+ int_in[0] = cursor number. 0-7 are standard cursors; 255-257 are special.
+ addr in[0] = data for custom cursor (if number is 255).

The cursor numbers are:

#define ARROW 0 /* Standard pointer */
#define TEXT CRSR 1 /* I-beam */

#define HOURGLASS 2 /* Hourglass */

#define POINT HAND 3 /* Pointing finger */
#define FLAT HAND 4 /* Dragging hand */
#define THIN CROSS 5 /* Thin crosshair */
#define THICK CROSS 6 /* Thick crosshair */
#define OUTLN CROSS 7 /* Outline crosshair */
#define USER _DEF 255 /* custom shape */
#define M OFF 256 /* Hide mouse pointer */
#define M ON 257 /* Show mouse pointer */

Function 79 - Read mouse/keyboard state

C Interface:

+ WORD graf mkstate(WORD *px, WORD *py, WORD *pmouse, WORD *pkeyb);
Entered with:

+ function=79;

« #int_in=0;
« #addr in=0.
Returns:

- int_out[1] = mouse X coordinate
+ int_out[2] = mouse Y coordinate
- int_out[3] = mouse button state

- int out[4] = keyboard shift state

Function 80 - Get scrap directory name

C Interface:
« WORD scrp read(BYTE far *pscrap);
Entered with:

+ function=80;

« #int_in=0;

« #addr in=1;

+ addr_in[0] = address of buffer to receive scrap directory name.

Returns:

- Buffer filled with "\"-terminated filename.
+ int _out[0] = bitmap of files existing in that directory.

: This function is not present in ViewMAX.

http://www.seasip.info/Gem/aes.html#21
http://www.seasip.info/Gem/aes.html#21
http://www.seasip.info/Gem/vdi.html#111

The file types returned by this function are:
Bit 0: SCRAP.CSV

Bit 1: SCRAP.TXT
Bit 2: SCRAP.GEM
Bit 3: SCRAP.IMG
Bit 4: SCRAP.DCA
Bit 15: SCRAP.USR

The path returned will end with a "\".

Function 81 - Set scrap directory name

C Interface:
WORD scrp_write(BYTE far *pscrap);
Entered with:

 function=81;
#int_in=0;
#addr in=1;
addr in[0] = address of new scrap directory name.
Returns:

int_out[0] = 1 if the directory exists, 0 if it doesn't. If 0 was returned, then a new scrap
directory should be set.

: This function is not present in ViewMAX.

Function 82 - Empty scrap directory

C Interface:
WORD scrp_clear();
Entered with:
+ function=82;

#int_in=0;
#addr in=0.

Returns:
int_out[0] = 1.
The files deleted are those mentioned earlier:

SCRAP.CSV
SCRAP.TXT
SCRAP.GEM
SCRAP.IMG
SCRAP.DCA
SCRAP.USR

: This function is not present in GEM/1 or ViewMAX.

Function 90 - File selector

C Interface:
WORD fsel_input(BYTE far *pipath, BYTE far *pisel, WORD *pbutton);
Entered with:

+ function=90;
#int_in=1;
#addr in=2;
addr_in[0] = address of initial directory and wildcard, eg "C:*.GEM";
addr_in[1] = address of initial filename selection, eg "PICTURE.GEM".
Returns:
int_out[0] = 0 if selector was not drawn, else 1.
int out[1] = 0 if "cancel" was clicked, 1 if "OK".
Buffers now contain selected directory and filename.

: This function is not present in ViewMAX/3, and will crash ViewMAX/2.

Function 91 - File selector with title

C Interface:
WORD fsel exinput(BYTE far *pipath, BYTE far *pisel, WORD *pbutton, BYTE far
*title);
Entered with:
 function=91;
#int_in=1 (error? No integers are passed)
#addr in=3;
addr_in[0] = address of initial directory and wildcard, eg "C:*.GEM";

addr_in[1] = address of initial filename selection, eg "PICTURE.GEM";
addr_in[2] = address of form title for the selector.

Returns:

int_out[0] = 0 if selector was not drawn, else 1.
int_out[1] = 0 if "cancel" was clicked, 1 if "OK".
Buffers now contain selected directory and filename.

: This is only present in FreeGEM. Note that if you are adding a binding for this function, the
addr in[] array may need to be redeclared for 3 entries instead of 2.

To check for this feature, use appl_init() and check that xbuf.arch is nonzero.

: This function is GEM/4 and GEM/5 also have a function 91, which behaves differently and

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10

is documented below. The FreeGEM function 91 is based on the Atari function of the same number
and name.

Function 91 - GEM/4, GEM/5 - File selector

C Interface:
+ None
Entered with:

function=91;

« #int in=1;

« #addr in=2;

- int_in[0] = Context sensitve help flag

+ addr_in[0] = address of initial directory and wildcard, eg "C:*.GEM";

+ addr_in[1] = address of initial filename selection, eg "PICTURE.GEM";

Returns:

- int_out[0] = 0 if selector was not drawn, else 1.
- int out[1] =0 if "cancel" was clicked, 1 if "OK".
« Buffers now contain selected directory and filename.

: This is only present in GEM/4 and GEM/5. It stands in the same relation to the normal file
selector as function 57 does to function 50.

Function 100 - Create a window

C Interface:
+ WORD wind _create(UWORD kind, WORD x, WORD y, WORD w, WORD h);
Entered with:

+ function=100;

« #int_in=5;

« #addr in=0;

- int_in[0] = window styles (see below);

- int_in[1-4] = Rectangle for when the window is maximised.

Returns:
- int _out[0] = -1 if no windows available, else window handle.

Single-tasking GEM allows 7 windows (8 including the desktop window). Styles are:

#define NAME 0x0001 /* Titlebar */

#define CLOSER 0x0002 /* Close button */

#define FULLER 0x0004 /* Maximise button */

#define MOVER 0x0008 /* Window can be moved */

#define INFO 0x0010 /* Info bar (below the title bar) */

#define SIZER 0x0020 /* Resize button (bottom right-hand corner) */
#define UPARROW 0x0040 /* "up" button for vertical scroll bar */
#define DNARROW 0x0080 /* "down" button for vertical scroll bar */

#define VSLIDE 0x0100 /* Vertical scroll bar */

http://www.seasip.info/Gem/aes.html#50
http://www.seasip.info/Gem/aes.html#57

#define LFARROW 0x0200 /* "left" button for horizontal scroll bar */
#define RTARROW 0x0400 /* "right" button for horizontal scroll bar */
#define HSLIDE 0x0800 /* Horizontal scroll bar */

: The following style is present in GEM/2 and later:
#define HOTCLOSE 0x1000 /* "Hot" close button */

The "hot" close button is used by the two-fixed-windows Desktop in GEM/2 and later. The
difference between the "Hot" and normal close buttons is that you can move the mouse pointer out
of the close button while holding it down, and WM_CLOSE messages will still be sent to the
window.

C The following is not supported in PC GEM, but are in other GEMs:
#define SMALLER 0x4000 /* Iconify button */

Function 101 - Open a window

C Interface:
+ WORD wind_open(WORD hwind, WORD x, WORD y, WORD w, WORD h);
Entered with:

« function=101;

« #int_in=5;

« #addr in=0;

+ int_in[0] = Window handle;

« int_in[1-4] = Window rectangle.

Opens a window that has previously been created.

Function 102 - Close a window

C Interface:
« WORD wind close(WORD hwind);
Entered with:

function=102;

- #int in=1,

« #addr_in=0;

- int_in[0] = Window handle.

Closes a window, but does not free its handle. The window can be reopened if desired.

Function 103 - Delete a window

C Interface:
+ WORD wind_delete(WORD hwind);
Entered with:

+ function=103;

- #int_in=1;

« #addr in=0;

 int_in[0] = Window handle.

Deletes the window, so its slot can be re-used.

Function 104 - Get window properties

C Interface:

+ WORD wind_get(WORD hwind, WORD field, WORD *pw1, WORD *pw2, WORD *pw3,
WORD *pw4);

Entered with:

function=104;

. #int in=2;

« #addr in=0;

- int_in[0] = Window handle;

- int_in[1] = Property to read.
Returns:

- int out[1-4] = returned values

The window properties which can be read are:

Window areas (return a rectangle)

#define WF_ WXYWH 4 /* Work area. The area that can be drawn on. */
#define WF CXYWH 5 /* Current window size/position */

#define WF_ PXYWH 6 /* Previous window size/position */

#define WF_FXYWH 7 /* Full window size/position */

#define WF_FIRSTXYWH 11 /* First rectangle needing repainting */
#define WF NEXTXYWH 12 /* Next rectangle needing repainting */

Sliders (return an integer)

#define WF HSLIDE 8 /* Position of horizontal slider, 0-1000 */
#define WF _VSLIDE 9 /* Position of vertical slider, 0-1000 */
#define WF HSLSIZ 15 /* Size of horizontal thumb, 1-1000 */
#define WF VSLSIZ 16 /* Size of vertical thumb, 1-1000 */

Others (return various)

#define WF_TOP 10 /* Handle of topmost window, 0 if none open */
#define WF_SCREEN 17 /* Address of AES graphics buffer. */
#define WF_TATTRB 18 /* Window attributes. */

The rectangles WF_CXYWH, WF_PXYWH, WF_FXYWH include window decorations.

WF_SCREEN returns four values: Buffer offset, buffer segment, buffer length (low), buffer
length(high). The buffer is used to back up the screen behind menus; if you use it, you should

disable menus with wind update().

WF_TATTRB returns a bitmap in which two bits can be set:

#define WA SUBWIN 0x01 /* The two windows on a GEM/3 desktop have this
* attribute set. If the active window has the
* WA SUBWIN attribute, then other WA SUBWIN windows
* on the screen can also get events. */
#define WA KEEPWIN 0x02 /* In multitasking GEM: the window should not be
* closed when the application runs a DOS program */

; In some versions of the FreeGEM AES, it is possible to read the window decorations using
this call. To check for this feature, use appl_init() and check that bit 2 of xbuf.abilities is set.
#define WF_OBFLAG 1001 /* Window tree: flag words */

#define WF_OBTYPE 1002 /* Window tree: type words */
#define WF_OBSPEC 1003 /* Window tree: spec dwords */

wind get (n, WF OBFLAG, &a, &b, &c, &d) - a = object flags for decoration "n"

wind get (n, WF _OBTYPE, &a, &b, &c, &d) - a = object type of decoration "n"

wind get(n, WF_OBSPEC, &a, &b, &c, &d) - (b<<1l6)|a = spec of decoration "n"

wind set (n, WF OBFLAG, a, b, ¢, d) - Set flags for decoration "n" to "a"

wind set (n, WF_OBSPEC, a, b, c, d) - Set spec of decoration "n" to
(b<<1l6) |a

The "n" parameter is one of:

#define W_BOX 0 outline

#define W _TITLE 1 titlebar outline

#define W _CLOSER 2 close box

#define W _NAME 3 titlebar

#define W _FULLER 4 full-size box

#define W_INFO 5 info bar

#define W _DATA 6 work area outline

#define W_WORK 7 work area

#define W _SIZER 8 resize box

#define W _VBAR 9 wvertical scroll bar outline
#define W _UPARROW 10 scroll up box

#define W_DNARROW 11 scroll down box

#define W VSLIDE 12 wvertical scroll bar

#define W _VELEV 13 scroll thumb

#define W _HBAR 14 horizontal scroll bar outline
#define W_LFARROW 15 scroll left box

#define W _RTARROW 16 scroll right box

#define W _HSLIDE 17 horizontal scroll bar
#define W _HELEV 18 horizontal scroll bar thumb

Function 105 - Set window properties

C Interface:

+ WORD wind_set(WORD hwind, WORD field, WORD w1, WORD w2, WORD w3,
WORD w4);

Entered with:
« function=105;

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/gengem.html
http://www.seasip.info/Gem/aes.html#107

« #int in=6;

« #addr in=0;

- int_in[0] = Window handle;

- int_in[1] = Property to set.

- int_in[2-5] = Parameters as required
The window properties which can be set are:

Sliders - take an integer parameter

#define WF HSLIDE 8 /* Position of horizontal slider, 0-1000 */
#define WF VSLIDE 9 /* Position of vertical slider, 0-1000 */
#define WF HSLSIZ 15 /* Size of horizontal thumb, 1-1000 */
#define WF VSLSIZ 16 /* Size of vertical thumb, 1-1000 */

Strings - these take two parameters, offset and segment
#define WF_NAME 2 /* Window title */
#define WF_INFO 3 /* Info line */

Window size - takes a rectangle as parameter

#define WF CXYWH 5 /* Window size*/

Others

#define WF_TOP 10 /* Top (active) window */

#define WF NEWDESK 14 /* Set object tree to draw on desktop*/
#define WF_TATTRB 18 /* Set window attributes */

#define WF_SIZTOP 19 /* Resize window and move to front */
#define WF_COTOP 20 /* To make two windows look like one */

WF NEWDESK takes three parameters; the first two are the offset and segment of an object tree,
and the third is the index of the object within it (normally 0). This tree will then be drawn instead of
the standard desktop.

WF _COTOP takes no extra parameters. It sets the window handle passed in int_in[1] as "co-top
window" to the currently active window. You can pass a window handle of -1 for "none". When a
window's co-top window is active, the window will also be drawn as active. This is for the tree
view in ViewMAX, which uses two windows side by side; both must be drawn as active or inactive
together.

: In some versions of the FreeGEM AES, it is possible to change the window decorations
using this call; see wind get() for details.

: WEF_COTORP is only available in ViewMAX/2 and later.

Function 106 - Find window from point

C Interface:

« WORD wind_find(WORD x, WORD vy);
Entered with:

+ function=106;

. #int_in=2;

« #addr_in=0;

- int_in[0] = X coordinate of point;

« int in[1] =Y coordinate of point.

http://www.seasip.info/Gem/aes.html#windecs
http://www.seasip.info/Gem/gengem.html

Returns:

int_out[0] = window handle, 0 if no window contains the point.

Function 107 - Lock screen for drawing

C Interface:
WORD wind update(WORD begin);
Entered with:

+ function=107,
#int in=1;
#addr in=0;
int_in[0] = update flag.
If the update flag is 1, then the AES is prevented from making changes to the screen (because the

program is drawing on it). If the flag is 0, the AES is allowed to make changes. The update flag can
also be 3 (take full control of mouse pointer - like a modal form does) or 2 (release mouse pointer).

Function 108 - Calculate window geometry

C Interface:

WORD wind_calc(WORD wctype, WORD kind, WORD x, WORD y, WORD w, WORD
h, WORD *px, WORD *py, WORD *pw, WORD *ph);

Entered with:
+ function=108;
« #int_in=6;
#addr _in=0;
int_in[0] = Calculation type (0 = work area to outer rectangle, 1 = outer rectangle to work
area).

int_in[1] = Window style
int_in[2-5] = input rectangle

Returns:

int_out[1-4] = calculated rectangle

Function 110 - Load resources

C Interface:
WORD rsrc_load(BYTE far *filename);
Entered with:

« function=110;
#int_in=0;
#addr in=1;

http://www.seasip.info/Gem/aes.html#100

+ addr in[0] = filename of resource file.
Returns:

- int_out[0] = 0 if resource load failed, nonzero if success.
« The globals array will contain (at global+20):

DD object tree pointers
DD resource file address
DD resource file length

Function 111 - Free resources

C Interface:
- WORD rsrc_free(VOID);
Entered with:

function=111;
« #int_in=0;
« #addr in=0.

Returns:

- int out[0] = 0 if failed to free resources, nonzero if success.

Function 112 - Get resource address

C Interface:

« WORD rsrc_gaddr(WORD type, WORD id, (VOID far *) *addr);
Entered with:

 function=112;

« #int_in=2;

« #addr in=0;

« int_in[0] = resource type;

+ int_in[1] = resource number.

Returns:

- int_out[0] = 0 if resource not found, else nonzero.
+ addr_out[0] = resource address

This is the only function in single-tasking GEM which uses addr out. The resource types that can
be passed are:

#define R _STRING
#define R _TMAGEDATA
#define R OBSPEC

/* Free-form ASCII string */
/* Free-form image data */
/* Pointer to ob_spec member of object */

#define R TREE 0 /* Object tree
#define R OBJECT 1 /* Objects (as one big array) */
#define R TEDINFO 2 /* Text field
#define R _ICONBLK 3 /* Icon
#define R BITBLK 4 /* Bitmap
5
6
7

http://www.seasip.info/Gem/aestruct.html#bitblk
http://www.seasip.info/Gem/aestruct.html#iconblk
http://www.seasip.info/Gem/aestruct.html#tedinfo
http://www.seasip.info/Gem/aestruct.html#object

#define R TEPTEXT 8 /* Pointer to te ptext member of text field */

#define R TEPTMPLT 9 /* Pointer to te ptmplt member of text field */
#define R TEPVALID 10 /* Pointer to te pvalid member of text field */
#define R IBPMASK 11 /* Pointer to ib pmask member of icon */
#define R IBPDATA 12 /* Pointer to ib_ pdata member of icon */
#define R IBPTEXT 13 /* Pointer to ib ptext member of icon */
#define R BIPDATA 14 /* Pointer to bi pdata member of bitmap */
#define R_FRSTR 15 /* Pointer to free-form strings */

#define R _FRIMG 16 /* Pointer to free-form images */

The call types normally used are R TREE, R STRING and R IMAGEDATA. It is rare that a
program needs to access a TEDINFO, ICONBLK or BITBLK directly rather than via its containing
object tree.

Function 113 - Set resource address

C Interface:
« WORD rsrc_saddr(WORD type, WORD id, (VOID far *) addr),
Entered with:

 function=113;

. #int in=2;

« #addr in=1;

- int_in[0] = resource type;

- int_in[1] = resource number;

« addr_in[0] = address to write to the resource.

Returns:
- int_out[0] = 0 if resource not found, else nonzero.

This is called with one of the "pointer" resource types; R OBSPEC to R FRIMG. For example, it
could set a new icon bitmap. In general programs manipulate resource pointers themselves rather
than using this function.

Function 114 - Fix object positions

C Interface:
« WORD rsrc_obfix(OBJECT far *tree, WORD obyj);
Entered with:

function=114;
- #int in=1,
- #addr in=1,
« int_in[0] = object number within tree;
+ addr_in[0] = root of the object tree.
This will convert an object's dimensions from the form used in the resource file (low byte is

dimension in characters, high byte is offset in pixels) to screen coordinates. A height of 25
characters or a width of 80 is taken to mean as high/wide as possible.

http://www.seasip.info/Gem/aestruct.html#object

Function 115 - Load resources (supports EMS)

C Interface:
None.
Entered with:

function=115;
#int_in=0;
#addr in=1;
addr in[0] = filename of resource file.

Returns:

int_out[0] = 0 if resource load failed, nonzero if success.
The globals array will contain (at global+20):

DD object tree pointers
DD resource file address
DD resource file length

C This function is only present in GEM/4 and GEM/5. It behaves just like the normal version
except that resources can be loaded into EMS memory. If resources are in EMS, then they should
only be manipulated using GEM functions, not by trying to access them directly.

Function 116

: This function is used in GEM/4 and GEM/5 to manipulate resources in EMS, but exactly
what it does is not known.

Function 120 - Read shell command

C Interface:

WORD shel read(BYTE far *pemd, BYTE far *ptail);
Entered with:

+ function=120;

#int_in=0;

#addr in=2;

addr_in[0] = buffer for program name;

addr_in[1] = buffer for command tail.

If shel write() has not been used, this will return the information with which the program was
started.

http://www.seasip.info/Gem/aes.html#121

Function 121 - Set next program to execute

C Interface:
WORD shel write(WORD doex, WORD isgem, WORD isover, BYTE far *pcmd, BYTE
far *ptail);
Entered with:
. function=121;
« #int in=3;
#addr in=2;
int_in[0] = "doex" flag - 0 to quit GEM after running the program, 1 to return to the desktop;
int_in[1] = "isgem" - 0 if program runs in text mode, 1 for graphics mode;
int_in[2] = "isover" - 0 to keep current program in memory, 1 to load specified program
instead of current, 2 to unload AES and restart it afterwards;

addr_in[0] = address of program name;
addr_in[1] = address of command tail.

Returns:
int_out[0] = 0 if failed, 1 if OK.

Function 122 - Get shell settings

C Interface:
WORD shel get(VOID far *buffer, WORD len);
Entered with:

 function=122;
- #int_in=1;
#addr _in=1;
int_in[0] = Length of data (up to 1k);
addr_in[0] = Destination for data.

This function is intended for use only by the Desktop, to save its state while other programs are
executing. Some versions of the GEM PTK do not supply bindings for this function.

Function 123 - Save shell settings

C Interface:
WORD shel put(VOID far *buffer, WORD len);
Entered with:
function=123;
- #int_in=1,
#addr in=1;
int_in[0] = Length of data (up to 1k);
addr_in[0] = Address of data.

This function is intended for use only by the Desktop, to save its state while other programs are
executing. Some versions of the GEM PTK do not supply bindings for this function.

Function 124 - Find a program

C Interface:
WORD shel find(BYTE far *spec);
Entered with:

function=124;
#int in=0;
#addr in=1;
addr_in[0] = address of buffer containing program name.

Returns:

int_out[0] = 0 if file can't be found, 1 if OK.
Buffer contains real name of program.

This will search the current directory and the search path.

Function 125 - Read environment

C Interface:
WORD shel envin(BYTE far * far *ptr, BYTE far *string);
Entered with:

 function=125;
#int_in=0;
#Haddr in=2;
addr_in[0] = address of far pointer which will be set;
addr_in[1] = address of string to find (eg: "PATH=").

Returns:

The pointer is set to NULL if nothing was found, or the address of the next byte after the
search string otherwise.

Function 126 - Get the default application name

C Interface:
WORD shel rdef(BYTE far *pcmd, BYTE far *pdir);
Entered with:

* function=126;
#int_in=0;
#addr in=2;

addr in[0] = address of buffer for command name;
addr_in[1] = address of buffer for directory.

Returns:

Buffers set accordingly.

Function 127 - Set the default application name

C Interface:
WORD shel wdef(BYTE far *pcmd, BYTE far *pdir);
Entered with:
« function=127,
« #int_in=0;
#Haddr in=2;
addr_in[0] = address of command name;
addr_in[1] = address of directory.

Function 130 - Calculate intermediate rectangle

C Interface:

WORD xgrf stepcalc(WORD orgw, WORD orgh, WORD xc, WORD yc, WORD w,
WORD h, WORD *pcx, WORD *pcy, WORD *pcnt, WORD *pxstep, WORD *pystep)

Entered with:
+ function=130;
.« #int_in=o6;
#addr _in=0;
int_in[0] = initial width of rectangle
int_in[1] = initial height of rectangle
int_in[2-5] = target size / location of rectangle
Returns:

int_out[1-2] = coordinates of intermediate box

int_out[3] = no. of steps to draw between initial size & final size
int_out[4] = X step ((final X - initial X) / count)

int out[5] =Y step.

Function 131 - Animate transition from one rectangle to another

C Interface:

WORD xgrf 2box(WORD xc, WORD yc, WORD w, WORD h, WORD corners, WORD
cnt, WORD xstep, WORD ystep, WORD doubled);

Entered with:

+ function=131;

« #int_in=9;

« #addr in=0;

- int_in[0] = No. of steps to draw;

- int_in[1] = X step;

« int in[2] =Y step;

- int_in[3] ="doubled" flag - if set, box changes size, otherwise position;;

- int_in[4] ="corners" flag - if set, will draw the corners of the box correctly (slower);
- int_in[5-8] = start rectangle coordinates.

This function and the previous one are used internally in the implementation of graf growbox() and

graf shrinkbox().

Function 132 - Set a colour category

C Interface:

« WORD xgrf colour(WORD set, WORD fg, WORD bg, WORD style, WORD index);
« WORD xgrf color(WORD set, WORD fg, WORD bg, WORD style, WORD index);

Entered with:

function=132;

« #int_in=5;

« #addr in=0;

- int_in[0] = Colour set, 0-15;
 int_in[1] = Foreground colour;
- int in[2] = Background colour;
- int_in[3] = Fill style;

- int_in[4] = Fill index.

C This function is only present in ViewMAX/2 and later. To check for this feature in
FreeGEM, use appl_init() and check that xbuf.arch is nonzero. Unfortunately there is no similar test
for ViewMAX/2.

The colour categories used by ViewMAX are:

#define CC_NAME 8 /* Titlebar */

#define CC_SLIDER 9 /* Scrollbar background */

#define CC_DESKTOP 10 /* Desktop */

#define CC_BUTTON 11 /* Button and other 3D objects */
#define CC_INFO 12 /* Information bar (below titlebar) */
#define CC_ALERT 13 /* Alert box (ignored) */

#define CC_SLCTDNAME 14 /* Inactive titlebar */

C Later FreeGEM builds also allow:

#define CC_3DSHADOW 16 /* Foreground is 3D light colour */
/* Background is 3D dark colour */
#define CC_RADIO 17 /* Foreground and background of the */
/* radio button "dot" */
#define CC CHECK 18 /* Colour of the checkbox tick */

To check for this feature, use appl_init() and check that bit 3 of xbuf.abilities is set.

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/vdi.html#24
http://www.seasip.info/Gem/vdi.html#23
http://www.seasip.info/Gem/aes.html#73
http://www.seasip.info/Gem/aes.html#73

Function 133 - Set desktop image

C Interface:
WORD xgrf dtimage(MFDB far *mfdb);
Entered with:

 function=133;
#int in=0;
#addr in=1;
addr_in[0] = Address of MFDB of desktop image; 0 for none.

C This call is only present in ViewMAX/3.
The "r1" member of the MFDB holds 1 to draw the image centred, 2 to draw it tiled.

Function 1010 - Get property (setting)

C Interface:

WORD prop get(BYTE FAR *program, BYTE FAR *section, BYTE FAR *buf, WORD
buflen, WORD options);

Entered with:

+ function=1010;

- #int _in=2;
#addr in=3;
addr_in[0] = address of program name, eg "PTK.DEMOQO"
addr_in[1] = address of section name, eg "Pen.colour"
addr_in[2] = address of results buffer
int_in[0] = options
int_in[1] = size of results buffer (including terminating 0).

Returns:

int_out[0] = 0 if successful, 1 if property not found, -1 if file error, -2 if out of memory.
buffer filled if return value was 0.

"Options" should be 0 if the value is per user, 1 if it is global. Currently has no effect, because GEM
does not support user profiles. It is recommended that global settings should be avoided.

C This call is a compile-time option in recent FreeGEM versions. To check for this feature,
use appl_init() and check that bit 1 of xbuf.abilities is set.

Function 1011 - Put property (setting)

C Interface:
WORD prop put(BYTE FAR *program, BYTE FAR *section, BYTE FAR *buf, WORD

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/mfdb.html

options);
Entered with:
+ function=1011;
- #int_in=1;
#addr in=3;
addr_in[0] = address of program name, eg "PTK.DEMO"
addr_in[1] = address of section name, eg "Pen.colour"

addr_in[2] = address of results buffer
int_in[0] = options

Returns:

int_out[0] = 0 if successful, -1 if file error, -2 if out of memory.
buffer filled if return value was 0.

prop_get() will remove any leading spaces from returned values; so if you are writing a string that
may start with spaces, you should guard it with quotation marks when calling prop put() and
remove the quotation marks after the prop get(). Carriage returns and linefeeds must not be written

by prop_put().
"Options" should be 0 if the value is per user, 1 if it is global. Currently has no effect, because GEM
does not support user profiles. It is recommended that global settings should be avoided.

: This call is a compile-time option in recent FreeGEM versions. To check for this feature,
use appl_init() and check that bit 1 of xbuf.abilities is set.

Function 1012 - Delete property (setting)

C Interface:
WORD prop del(BYTE FAR *program, BYTE FAR *section, WORD options);
Entered with:

+ function=1012;
« #int_in=1;
#addr in=2;
addr_in[0] = address of program name, eg "PTK.DEMO"
addr_in[1] = address of section name, eg "Pen.colour"
int_in[0] = options

Returns:

int_out[0] = 0 if successful, 1 if property not found, -1 if file error, -2 if out of memory.
buffer filled if return value was 0.

"Options" should be 0 if the value is per user, 1 if it is global. Currently has no effect, because GEM
does not support user profiles. It is recommended that global settings should be avoided.

C This call is a compile-time option in recent FreeGEM versions. To check for this feature,
use appl_init() and check that bit 1 of xbuf.abilities is set.

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/aes.html#1010

Function 1020 - Get extended AES information

C Interface:

WORD xapp_getinfo(WORD section, WORD *v1, WORD *v2, WORD *v3, WORD *v4);
#define appl getinfo xapp_getinfo

Entered with:

function=1020;
#int_in=1;
#int out=5;
int_in[0] = section to check

Returns:

int_out[0] = 1 if successful, 0 if section number is not supported
int_out[1-4] = values for this section

This call is equivalent to the Atari call, appl getinfo(). Most of its sections only have meanings on
the Atari.

The values returned for each section are:

0
Information about the normal AES font:
1. font height
2. fontid
3. font type (O=system, 1=font scale mechanism (FSM))

information about the little AES font:
1. font height
2. font id
3. font type (0=system, 1=FSM)

Colours:
1. VDI device number
2. number of suppurted OBJECT colors.
3. Atari color icons are supported (1) or not (0)
4. Atari enhanced RSCs (>64kB) are possible (1) or not (0)

Language:
1. 0=English, 1=German, 2=French, 3=reserved, 4=Spanish, 5=Italian, 6=Swedish

general information 1:
1. preemptive multitasking (1) or not (0)
2. appl find() converts MiNT/AES-IDs (1) or not (0)
3. appl search() available (1) or not (0)
4. rsrc_rcfix() available (1) or not (0)

general information 2:
1. objc_xfind() available (1) or not (0)
2. reserved, always 0
3. menu_click() available (1) or not (0)
4. shel r/wdef() available (1) or not (0)

general information 3:
1. appl read(-1,...) available (1) or not (0)
2. shel get(addr,-1) available (1) or not (0)
3. menu_bar(tree,-1) available (1) or not (0)
4. menu_bar(tree,100) available (1) or not (0)

7
general (MagiC) information:
- Bit-0 = wdlg_xx() functions available (1)
Bit-1 = 1box_xx() functions available (1)
Bit-2 = fnts_xx() functions available (1)
Bit-3 = fslx_xx() functions available (1)
Bit-4 = pdlg_xx() functions available (1)
8
Mouse:
1. graf mouse(258-260, addr) available (1) or not (0)
2. The AES remember the mouse form of each application (1) or not (0)
9
Menus:
1. MultiTOS compatible submenus available (1) or not (0)
2. MultiTOS compatible popups available (1) or not (0)
3. MultiTOS compatible scrollmenus available (1) or not (0)
4. enhanced MN_SELECTED message available (1) or not (0)
10
shel write():
1. available modes:
Bit 0..7: highest possible value for doex & 0x00ff
Bit 8..15: Bits of doex & 0xff00, that are treated like MultiTOS does.
1: shel write(0,...) undoes previous shel write calls (-> the desktop will be
started after the actual program)
0: launching programm (MultiTOS like)
1: shel write(1,...) starts programs after the actual one
0: starts Programs immediately (MultiTOS like)
2. ARGV via iscr supported (1) or not (0)
11

Windows:
1. bits that are set represent supported functions:
Bit 0: WF_TOP returns the second uppermost window
1: wind_get (WF_NEWDESK)
:wind_g/set (WF_COLOR)
:wind_g/set (WF_DCOLOR)
:wind_get (WF_OWNER)
:wind_g/set (WF_BEVENT)
: WF_BOTTOM
: WF_ICONIFY
: WF_UNICONIFY
9..15: reserved, always 0
2. reserved, 0
3. available window buttons:
Bit 0: Iconifier
1: Backdrop-Button (MagiC)
2: Shift-Click for Backdrop

03 ON N KW

3: "Hot" Closebox (GEM/3 and MagiC)
4..15: reserved, 0
4. wind update(256..257) 'check and set' available (1) or not (0)
12
Messages
1. Bits which are set represent supported messages:
0: WM_NEWTOP
: WM_UNTOPPED
: WM_ONTOP
: AP_TERM
: MultiTOS like resolution change
: CH_EXIT
: WM_BOTTOM
: WM _ICONIFY
: WM_UNICONIFY
9: WM_ALLICONIFY
2. reserved, 0
3. WM_ICONIFY delivers coordinates (1) or not (0)

0 1O N AW~

13
OBJECTs
1. Atari-style 3D objects via ob_flags available (1) or not (0)
2. objc_sysvar() available (1) or not (0)
3. Speedo- and GDOS-Fonts allowed in the TEDINFO structure (1) or not (0)
Bit 0: G SWBUTTON available
1: G_POPUP available
2: WHITEBAK is used for underlining (MagiC like)
3: G_SHORTCUT available
14
Formulars (MagiC form xdo() and form xdial())
1. MagiC like Flydials supported (1) or not (0)
2. MagiC like key tables supported (1) or not (0)
3. last cursor position will be returned (1) or not (0)
4. reserved, 0

: This call is a compile-time option in recent FreeGEM versions. To check for this feature,
use appl_init() and check that bit 0 of xbuf.abilities is set.

This function corresponds to the Atari function number 130, appl getinfo().

Function 1030 - Get shell name

C Interface:
WORD xshl getshel(BYTE far *shell);
Entered with:

+ function=1030;
#addr in=1;
#int out=1;
addr_in[0] = buffer to receive shell filename

Returns:

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10

int_out[0] = 0 if standard shell (DESKTOP.APP) in use; 1 if it was overridden by use of
GEM.CFG or xshl_setshell().

Buffer contains shell filename (no path).

C This call is a compile-time option in recent FreeGEM versions. To check for this feature,
use appl_init() and check that bit 4 of xbuf.abilities is set.

Function 1031 - Set shell name

C Interface:
WORD xshl_setshel(BYTE far *shell);
Entered with:

+ function=1031;
#addr in=1;
#int out=1;
addr_in[0] = name of shell (no path; it must always be in \GEMAPPS\GEMSYS).

Returns:

int_out[0] = 0 if name was too long; 1 if successful.

C This call is a compile-time option in recent FreeGEM versions. To check for this feature,
use appl_init() and check that bit 4 of xbuf.abilities is set.

http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/aestruct.html#x_buf_v2
http://www.seasip.info/Gem/aes.html#10
http://www.seasip.info/Gem/aes.html#1031

This text was originally created by John Elliott, and was located on his website www.seasip.info.
This version of the document was packaged by Shane M. Coughlan for the OpenGEM SDK.

http://www.seasip.info/

	The Application Environment Services
	Function 10 - Initialise AES
	Function 11 - Read message pipe
	Function 12 - Write message pipe
	Function 13 - Find an application
	Function 14 - Play back recorded events
	Function 15 - Record events to memory
	Function 16 - Set bitmaps of available drives
	Function 17 - Yield
	Function 18 - Extended available drive bitmaps
	Function 19 - Finish using AES
	Function 20 - Await keyboard event
	Function 21 - Await mouse click
	Function 22 - Await mouse enter/leave rectangle
	Function 23 - Await message
	Function 24 - Sleep
	Function 25 - Monitor all events
	Function 26 - Set double-click time
	Function 30 - Create or remove menu bar
	Function 31 - Mark menu item as "checked"
	Function 32 - Mark menu item as enabled/disabled
	Function 33 - Mark menu item as selected/normal
	Function 34 - Set menu item text
	Function 35 - Register a desk accessory
	Function 36 - Unregister a desk accessory
	Function 37 - Set/get menu click options
	Function 38
	Function 40 - Add an object to an object tree
	Function 41 - Delete an object from an object tree
	Function 42 - Draw an object or object tree
	Function 43 - Find an object from its coordinates
	Function 44 - Find coordinates of an object
	Function 45 - Change an object's order in the tree
	Function 46 - Handle a keypress in a text field
	Function 47 - Change an object's state
	Function 50 - Modal entry form
	Function 51 - Create or destroy dialog{ue} box
	Function 52 - Show alert message
	Function 53 - Show system alert message
	Function 54 - Centre an object on the screen
	Function 55 - Handle keyboard event in a modal form
	Function 56 - Handle click event in a modal form
	Function 57 - GEM/4 Modal entry form
	Function 58 - GEM/4 alert
	Function 60 - Create a process
	Function 61 - Run process
	Function 62 - Delete process
	Function 63 - Process information
	Function 64 - Allocate memory
	Function 65 - Free memory
	Function 66 - Switch to process?
	Function 67 - Block a process?
	Function 70 - Drag box for sizing
	Function 71 - Drag box for drag/drop
	Function 72 - Draw moving box
	Function 73 - Draw expanding box
	Function 74 - Draw contracting box
	Function 75 - See if a mouse moves off a control
	Function 76 - Handle vertical/horizontal drag
	Function 77 - Get GEM's VDI handle
	Function 78 - Set mouse pointer
	Function 79 - Read mouse/keyboard state
	Function 80 - Get scrap directory name
	Function 81 - Set scrap directory name
	Function 82 - Empty scrap directory
	Function 90 - File selector
	Function 91 - File selector with title
	Function 91 - GEM/4, GEM/5 - File selector
	Function 100 - Create a window
	Function 101 - Open a window
	Function 102 - Close a window
	Function 103 - Delete a window
	Function 104 - Get window properties
	Function 105 - Set window properties
	Function 106 - Find window from point
	Function 107 - Lock screen for drawing
	Function 108 - Calculate window geometry
	Function 110 - Load resources
	Function 111 - Free resources
	Function 112 - Get resource address
	Function 113 - Set resource address
	Function 114 - Fix object positions
	Function 115 - Load resources (supports EMS)
	Function 116
	Function 120 - Read shell command
	Function 121 - Set next program to execute
	Function 122 - Get shell settings
	Function 123 - Save shell settings
	Function 124 - Find a program
	Function 125 - Read environment
	Function 126 - Get the default application name
	Function 127 - Set the default application name
	Function 130 - Calculate intermediate rectangle
	Function 131 - Animate transition from one rectangle to another
	Function 132 - Set a colour category
	Function 133 - Set desktop image
	Function 1010 - Get property (setting)
	Function 1011 - Put property (setting)
	Function 1012 - Delete property (setting)
	Function 1020 - Get extended AES information
	Function 1030 - Get shell name
	Function 1031 - Set shell name

